

Pressure Regulator RB 3200

- Balanced valve design eliminates inlet pressure effect
- Rugged construction for durability
- ► Rapid response to load changes
- Integral shutoff valve
- Internal relief
- Inlet strainer

Applications

The RB 3200 regulator is is designed for commercial and small industrial applications, and all installations with continuous consumption or rapid flow rate variations, such as burners, industrial ovens, boilers...

It is suitable for installation in cabinets, as a space saving regulator.

Description

The RB 3200 regulator is a direct-acting, spring-loaded regulator (lever type) with an integrated relief valve and optional safety shut-off device.

The balanced valve ensures constant outlet pressure when the upstream pressure varies. This eliminates changes to the orifice size arising from different inlet pressure ranges. The regulator is equipped with a built-in filter (filtration grade 0.5 mm).

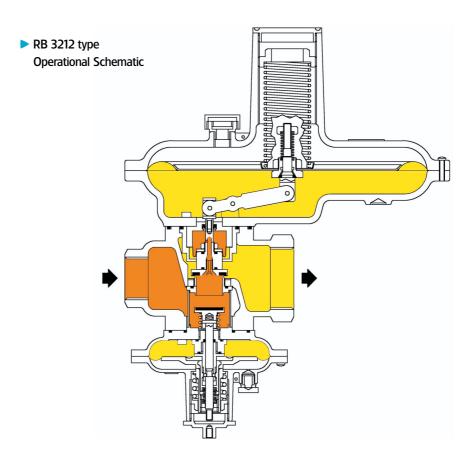
The safety shutoff valve cuts the gas flow when the outlet pressure exceeds the set pressure (UPSO) or when it drops below the set value (UPSO). It remains closed until the valve is manually reset.

The relief valve avoids triggering the safety shutoff valve in case of thermal expansion, transient surges of pressure and creep leaks from regulator. The relief pressure is pre–set from factory.

Technical Features

recrimed reduces					
Maximum inlet pressure	10 bar				
Outlet pressure	7 mbar – 160 mbar				
	Extended range up to 350 mbar				
Accuracy & lock-up pressure	Up to AC5 / up to SG10				
Operating temperature	-20°C to +60°C				
Acceptable gases	Natural gas, town gas, propane, butane, air,				
	nitrogen or any non-corrosive gas				
Installation	Horizontal or vertical				
Safety devices	Standard relief valve				
	Optional built-in safety shut-off valve:				
	- over-pressure shut-off (OPSO)				
	- under-pressure shut-off (UPSO)				
Options	Internal or external control line				
	Monitor version				

Sizes and Connections


Sizes	1" x 1"1/2 by standard version 1" x 1" by monitor version
Туре	Parallel internal thread according to ISO 228/1 or ISO 7/1

▶ Pressure Regulator RB 3211

Materials

Body	Spheroidal graphite iron ISO 1083 gr 500-7
Head	Die cast aluminium
Internal parts	Stainless steel and brass
Seals	Nitrile rubber
Diaphragm	Rubberized fabric

Inlet pressure Outlet pressure

► RB 3211

Type Designation and Options

To specify the version of the RB 3200 regulator to be ordered, the options and relevant codes should be selected from the table below.

R	В	х	3	2	1	Χ	X	Х	Options
		Е							External sensing line (standard)
		ı							Internal sensing line
						0			Relief valve
						1			Relief valve + over-pressure shut-off valve
						2			Relief valve + over-and under-pressure shut-off valve
							М		Monitor version
								TR	Reduced head (see spring selection tables)

Example: RBE 3212 is a 3200 regulator with an external sensng line and an OPSO / UPSO shut-off valve

Flow Capacity

RB 3200 with built-in SSV and external sensing line

Inlet Pressure	Capacities in m ³ /h in standard conditions										
	Outlet pressure setting										
	20 mbar 50 mbar 100 mbar 150 mbar 200 mbar 350 mb										
	Spring	Spring	Spring	Spring	Spring	Spring					
	20565168	20565166	20565150	20565151	20565150	20565151					
0.14 bar	70	63	38	-							
0.35 bar	120	115	95	95							
0.5 bar	145	140	120	110	62	46					
0.7 bar	175	170	150	145	80	70					
1 bar	230	210	180	170	105	100					
1.5 bar	300	270	230	230	180	170					
2 bar	380	330	280	280	260	260					
4 bar	680	540	530	530	490	490					
7 bar	950	870	850	850	800	800					
10 bar	950	870	850	850	850	800					

Maximum capacity at 20 % drop

► The values given are those for appropriately sized pipe work.

▶The flow capacities of the regulator without a safety shut-off device are approximately 15 % higher.

Fault Capacity

For a 0.6 specific gravity gas, the wide-open orifice flow (Q) may be calculated using the following equations:

Sub-critical flow behavior, where P_e - P_a ≤ 0.5 P_e $Q = 300 \sqrt{P_a (P_e - P_a)}$ Critical flow behavior, where P_e - P_a > 0.5 P_e $Q = 300 P_e / 2$

Standard conditions:

- Absolute pressure of 1.013 bar
- Temperature of 15°C

where:

Q = maximum flow capacity (Sm³/h)

Pe = absolute inlet pressure (bar)

Pa = absolute outlet pressure (bar)

 K_G = flow coefficient

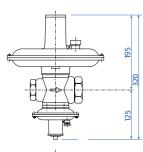
Correction factor for non-natural gas applications:

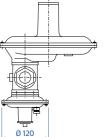
The flow rates are indicated or a 0.6 specific gravity gas.

To determine the volumetric flow rate for gases other than natural gas, the values in the capacity tables should be multiplied or calculated using the sizing equations with a correction factor. The table below lists the correction factors for some common gases:

Gas type	Specific	Correction
	gravity	factor
Air	1.00	0.77
Butane	2.01	0.55
Carbon dioxide (dry)	1.52	0.63
Carbon monoxide (dry)	0.97	0.79
Natural gas	0.60	1.00
Nitrogen	0.97	0.79
Propane	1.53	0.63
Propane-Air mix	1.20	0.71

Specific gravity or relative density


(air = 1, non-dimensional value)


To calculate the correction factor for gases not listed above, the specific gravity (d) of the gas should be taken and used in the following formula:

Correction factor =
$$\sqrt{\frac{0.6}{d}}$$

Model: 3210 - Weight: 4.5 kg.

Models: 3211 / 3212 - Weight: 4.9 kg.

Spring characteristics:

d : wire diameter
De : external diameter

Lo : height

It : nber of spires

Outlet Pressure Range

Regulator

-	8									
	Spring code	Sprir	ng Charac	teristics	Spring Range					
		d De Lo		Lo	lt	Head Ø 250	Head Ø 250 TR			
		mm	mm	mm		mbar	mbar			
	20565168	2.2	35	155	13	20 - 25				
	20565155	2.7	35	120	11	25 - 50				
	20565156	3	35	120	11.5	35 - 70				
	20565150	3,5	35	100	9.5	55 - 110	110-200			
	20565151	4	35	100	10.5	80 - 160	160-350			

Shut-off Valve

Over-pressure shut-off springs (OPSO)

•		•	•				
Spring code	S	pring Cha	racteristic	S	Spring Range		
	d	De	Lo	lt	Head Ø 120	Head Ø 120TR	
	mm	mm	mm		mbar	mbar	
20563022	1.5	25	35	5.5	28 - 60	50 - 100	
20563023	1.7	25	35	5.5	40 - 100	70 - 150	
20563014	1.9	25	35	5.5	60 - 130	110 - 220	
20563124	2.2	25	35	5.5	130 - 245	230 - 420	
20563121	2.5	25	35	5.5	220- 350	390 - 600	

"When both OPSO and UPSO springs are installed, the specific set range of the OPSO spring is reduced: the minimum set point that can be obtained is increased by around 15 %.

Under-pressure shut-off springs (UPSO)

onaci pressure shar off springs (or 50)									
Spring co	de		Spring Ch	Spring Range					
	d	De	Lo	lt	Head Ø 120	Head Ø 120 TR			
	mm	mm	mm		mbar	mbar			
2056051	11 0.8	10	20	7	10 - 25	18 - 44			
2056051	5 0.8	10	30	10	20 - 33	35 - 58			
2056051	8 0.9	10	30	10	37 - 45	65 - 78			
2056051	9 1.4	10	30	10	115 - 195	200 - 340			
2056051 2056051	0.8 5 0.8 8 0.9	10 10 10	20 30 30	10	10 - 25 20 - 33 37 - 45	18 - 44 35 - 58 65 - 78			

Relief Valve

The built-in relief valve is set 10 mbar above outlet pressure setting. Other settings on request.

Installation

- ➤ The RB 3200 regulator can be mounted in any position, horizontal or vertical
- RB 3200 can be used as monitor regulator, upstream to an active regulator. The external sensing line shall then be connected downstream to the regulator to be controlled.

Information to be specified when ordering:

- Regulator type code
- Maximum inlet pressure
- Outlet pressure range
- Outlet pressure setting
- OPCO setting*
- UPCO setting*
- * if requested